UNIT 1A REVI EW: Scientific Notation,
 Significant Figures \& Rounding, Metric Units, Density, Percent error

A. Convert the following numbers to scientific notation.
a) 17600.0
d) 10.2 \qquad
b) 0.00135
e) -0.000130
C) -67.30
f) 301.0 \qquad
B. Expand the following scientific notation to regular (standard) notation.
a) 4.96×10^{-2} \qquad d) -9.3×10^{-3}
b) 5.50×10^{-4} \qquad e) 7.01×10^{0}
\qquad
c) -8.37×10^{4} \qquad f) 4.92×10^{2} \qquad
C. Correct the following incorrect scientific notation.
a) 36.7×10^{1}
d) 851.6×10^{-3} \qquad
b) 0.0123×10^{4} \qquad e) -966×10^{-1}
c) -0.015×10^{-3} \qquad f) 0.047×10^{33} \qquad
D. Perform the following calculations. Answer in scientific notation
a) $\left(2.1 \times 10^{4}\right)+\left(3.5 \times 10^{5}\right)$
b) $\left(5.2 \times 10^{-5}\right)+\left(-2.69 \times 10^{-4}\right)$
c) $\left(6.0 \times 10^{16}\right)-\left(1.77 \times 10^{18}\right)$ \qquad
d) $\left(-4.5 \times 10^{-11}\right)-\left(1.83 \times 10^{-9}\right)$
e) $\left(8 \times 10^{15}\right) \times\left(6 \times 10^{3}\right)$ \qquad
f) $\left(1.5 \times 10^{26}\right) \times\left(-3.0 \times 10^{-24}\right)$
g) $\left(6 \times 10^{-7}\right) \div\left(3 \times 10^{-15}\right)$ \qquad
h) $\left(-5.6 \times 10^{-44}\right) \div\left(2.8 \times 10^{-34}\right)$ \qquad
E. How many significant figures are in each of the following numbers?
a) 114.0
e) 4.50×10^{3}
b) 733.02
f) -2340
c) 0.000310 \qquad g) 6.0040
d) 908010 . \qquad h) -4.010×10^{-4}

Addition/ Subtraction Use LEAST DECI MAL PLACES in problem.

Multiplication/ Division Use LEAST NUMBER OF SI G FIG in problem.
F. Report the answers to the following operations to the correct number of significant figures.
a) $23.5732+4.08-245.21+75.6=$ \qquad
b) $180.00-76.33-33.456=$ \qquad
c) $1+0.023-0.046=$ \qquad
d) $23.5732 \times 4.08 \div 245.21=$ \qquad
e) $180 \div 76.33 \times 33.5=$ \qquad
f) $\frac{30.59+28.205}{}=$
13.3×0.023

Accurate \& Precise

G. A measurement was taken three times. The correct measurement was 68.1 mL . Circle whether the set of measurements is accurate, precise, both, or neither.
a) $78.1 \mathrm{~mL}, 43.9 \mathrm{~mL}, 2 \mathrm{~mL}$ accurate precise both neither
b) $68.1 \mathrm{~mL}, 68.2 \mathrm{~mL}, 68.0 \mathrm{~mL}$ accurate precise both neither
c) $98.0 \mathrm{~mL}, 98.2 \mathrm{~mL}, 97.9 \mathrm{~mL}$ accurate precise both neither
d) $72.0 \mathrm{~mL}, 60.3 \mathrm{~mL}, 68.1 \mathrm{~mL}$ accurate precise both neither

H. Metric Units

Common Metric Prefixes

Prefix	$\mathbf{1 0}^{\mathbf{n}}$	Prefix	$\mathbf{1 0}^{\mathbf{n}}$	Prefix	$\mathbf{1 0}^{\mathbf{n}}$
micro (μ)	10^{-6}	milli (m)	10^{-3}	mega (M)	10^{6}
nano (n)	10^{-9}	centi (c)	10^{-2}	giga (G)	10^{9}
kilo (k)	10^{3}	deci (d)	10^{-1}		

1. Fill in the conversion factor
\qquad $1=$ \qquad $\mathrm{ml}=$ \qquad $\mathrm{Ml}=$ \qquad $\mathrm{cl}=$ \qquad $\mathrm{kl}=$ \qquad $\mu \mathrm{l}=$ \qquad $\mathrm{Gl}=$ \qquad dL

Write the equivalent measurement(MUST SHOW THE BRIDGE FOR CREDIT)
2. $4 \mathrm{~m}=$ \qquad mm
3. $49 \mathrm{~cm}=$ \qquad 4. $16 \mathrm{~kg}=$ \qquad
5. $97 \mathrm{~cm}=$ \qquad $\mu \mathrm{m}$
6. $2.51 \mathrm{dL}=$ \qquad kl \quad 7. $437 \mathrm{mg}=$ \qquad
8. $4.3 \mathrm{~km}=$ \qquad Mm
9. $5 \mathrm{~mm}=$ \qquad cm 10. $1.61=$ \qquad ml

I. Percent Error:

1. A student measured the string as 1.25 m long. The teacher said it was actually 2.12 m long. What was the student's percent error?
2. A teacher calculated the percent of sodium in the compound as 54%. The reference book said it was actually supposed to be 76%. What was the teacher's percent error?

Density:

For each problem below, write the equation and show your work. Always use units and box in your final answer.

1. The density of silver (Ag) is $10.5 \mathrm{~g} / \mathrm{cm}^{3}$. Find the mass of Ag that occupies $965 \mathrm{~cm}^{3}$ of space.
2. Under certain conditions, oxygen gas $\left(\mathrm{O}_{2}\right)$ has a density of $0.00134 \mathrm{~g} / \mathrm{mL}$. Find the volume occupied by 250.0 g of O_{2} under the same conditions.
3. Find the volume that 35.2 g of carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ will occupy if it has a density of $1.60 \mathrm{~g} / \mathrm{mL}$.
4. The density of ethanol is $0.789 \mathrm{~g} / \mathrm{mL}$. Find the mass of a sample of ethanol that has a volume of 150.0 mL .
5. 30.0 g of each of the following acids are needed. Find the volume of each that must be measured out in a graduated cylinder.
A. hydrochloric acid (HCl), density $=1.164 \mathrm{~g} / \mathrm{mL}$
B. sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, density $=1.834 \mathrm{~g} / \mathrm{mL}$
C. nitric acid $\left(\mathrm{HNO}_{3}\right)$, density $=1.251 \mathrm{~g} / \mathrm{mL}$
6. A rectangular block of lead (Pb) measures $20.0 \mathrm{~mm} \times 30.0 \mathrm{~mm} \times 45.0 \mathrm{~mm}$. If the density of Pb is 11.34 $\mathrm{g} / \mathrm{cm}^{3}$, calculate the mass of the block.
7. A cube of gold (Au) has a side length of 1.55 cm . If the sample is found to have a mass of 71.9 g , find the density of Au.
8. An irregularly-shaped sample of aluminum (Al) is put on a balance and found to have a mass of 43.6 g . The student decides to use the water-displacement method to find the volume. The initial volume reading is 25.5 mL and, after the Al sample is added, the water level has risen to 41.7 mL . Find the density of the Al sample in $\mathrm{g} / \mathrm{cm}^{3}$. (Remember: $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$.)
